
PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Intermediate Format

Version 627324

Table of contents

1 Introduction.. 2

2 Usage of the Intermediate Format... 2

 2.1 Concatenating Documents.. 3

 2.2 Modifying Documents.. 3

 2.3 Advanced Use...3

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Intermediate Format

2PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Note:

Please note that the intermediate format is an advanced feature and can be ignored by most users of Apache FOP.

1 Introduction

The intermediate format (IF) is a proprietary XML format that represents the area tree generated by the
layout engine. The area tree is conceptually defined in the XSL-FO specification in chapter 1.1.2. The IF
can be generated through the area tree XML Renderer (the XMLRenderer).

The intermediate format can be used to generate intermediate documents that are modified before they are
finally rendered to their ultimate output format. Modifications include adjusting and changing trait values,
adding or modifying area objects, inserting prefabricated pages, overlays, imposition (n-up, rotation,
scaling etc.). Multiple IF files can be combined to a single output file.

2 Usage of the Intermediate Format

As already mentioned, the IF is generated by using the XMLRenderer (MIME type: application/X-fop-
areatree). So, you basically set the right MIME type for the output format and process your FO files as
if you would create a PDF file. However, there is an important detail to consider: The various Renderers
don't all use the same font sources. To be able to create the right area tree for the ultimate output file,
you need to create the IF file using the right font setup. This is achieved by telling the XMLRenderer
to mimic another renderer. This is done by calling the XMLRenderer's mimicRenderer() method with an
instance of the ultimate target renderer as the single parameter. This has a consequence: An IF file rendered
with the Java2DRenderer may not look as expected when it was actually generated for the PDF renderer.
For renderers that use the same font setup, this restriction does not apply (PDF and PS, for example).
Generating the intermediate format file is the first step.

The second step is to reparse the IF file using the AreaTreeParser which is found in the
org.apache.fop.area package. The pages retrieved from the IF file are added to an AreaTreeModel instance
from where they are normally rendered using one of the available Renderer implementations. You can find
examples for the IF processing in the examples/embedding directory in the FOP distribution

The basic pattern to parse the IF format looks like this:

FopFactory fopFactory = FopFactory.newInstance();

// Setup output
OutputStream out = new java.io.FileOutputStream(pdffile);
out = new java.io.BufferedOutputStream(out);
try {
 //Setup fonts and user agent
 FontInfo fontInfo = new FontInfo();
 FOUserAgent userAgent = fopFactory.newFOUserAgent();

 //Construct the AreaTreeModel that will received the individual pages
 AreaTreeModel treeModel = new RenderPagesModel(userAgent,
 MimeConstants.MIME_PDF, fontInfo, out);

 //Parse the IF file into the area tree
 AreaTreeParser parser = new AreaTreeParser();
 Source src = new StreamSource(myIFFile);
 parser.parse(src, treeModel, userAgent);

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://www.w3.org/TR/2001/REC-xsl-20011015/slice1.html#section-N742-Formatting
http://svn.apache.org/viewcvs.cgi/xmlgraphics/fop/trunk/examples/embedding/java/embedding/intermediate/

Intermediate Format

3PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

 //Signal the end of the processing. The renderer can finalize the target document.
 treeModel.endDocument();
} finally {
 out.close();
}

This example simply reads an IF file and renders it to a PDF file. Please note, that in normal FOP operation
you're shielded from having to instantiate the FontInfo object yourself. This is normally a task of the
AreaTreeHandler which is not present in this scenario. The same applies to the AreaTreeModel instance,
in this case an instance of a subclass called RenderPagesModel. RenderPagesModel is ideal in this case
as it has very little overhead processing the individual pages. An important line in the example is the call
to endDocument() on the AreaTreeModel. This lets the Renderer know that the processing is now
finished.

The intermediate format can also be used from the command-line by using the "-atin" parameter for
specifying the area tree XML as input file. You can also specify a "mimic renderer" by inserting a MIME
type between "-at" and the output file.

2.1 Concatenating Documents

This initial example is obviously not very useful. It would be faster to create the PDF file directly. As the
ExampleConcat.java example shows you can easily parse multiple IF files in a row and add the parsed
pages to the same AreaTreeModel instance which essentially concatenates all the input document to one
single output document.

2.2 Modifying Documents

One of the most important use cases for the intermediate format is obviously modifying the area tree XML
before finally rendering it to the target format. You can easily use XSLT to process the IF file according to
your needs. Please note, that we will currently not formally describe the intermediate format. You need to
have a good understanding its structure so you don't create any non-parseable files. We may add an XML
Schema and more detailed documentation at a later time. You're invited to help us with that.

2.3 Advanced Use

The generation of the intermediate format as well as it parsing process has been designed to allow for
maximum flexibility and optimization. Please note that you can call setTransformerHandler() on
XMLRenderer to give the XMLRenderer your own TransformerHandler instance in case you would like
to do custom serialization (to a W3C DOM, for example) and/or to directly modify the area tree using
XSLT. The AreaTreeParser on the other side allows you to retrieve a ContentHandler instance where you
can manually send SAX events to to start the parsing process (see getContentHandler()).

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
running.html#standalone-start
http://svn.apache.org/repos/asf/xmlgraphics/fop/trunk/examples/embedding/java/embedding/intermediate/ExampleConcat.java

	Table of contents
	1 Introduction
	2 Usage of the Intermediate Format
	2.1 Concatenating Documents
	2.2 Modifying Documents
	2.3 Advanced Use

