NUnit 2.1.5

NUnit 2.1.5 is essentially a pre-release version of NUnit 2.2. When the 2.2 beta is released, it will include documentation of all the new features. Until that time, this document is provided as a supplement to the readme.pdf file.

The main purpose of providing this pre-release is to allow time for review and comment from those working on other open source projects that use or are otherwise affected by NUnit. For that reason, and because this version is not being widely distributed, we suggest that you direct questions to the nunit-developer list at sourceforge.
For those who heard about NUnit 2.2 through the book Pragmatic Unit Testing by the Pragmatic Programmers, this version is essentially the same as what is described in the book. See limitations below for one missing feature.

Changes from NUnit 2.1.4

General

This msi install of NUnit 2.1.5 continues to be built using Visual Studio 2003. The solution and project files in this distribution can only be loaded by Visual Studio 2003

The distributed binaries can run against .NET framework versions 1.0 or 1.1. Separate config files for each version are no longer needed. Instead, binding redirects are provided in each config which apply when running under version 1.0. The supplied configs for nunit-gui.exe and nunit-console.exe require editing in one case only: if both versions of the framework are installed and the user wants to give preference to version 1.0, it will be necessary to change the order of the supportedRuntime elements.
The NUnit framework and core are now in separate assemblies, both of which are installed in the GAC. The framework assembly contains all types that are normally referenced by tests, while the core contains those types used by the gui and console runners to execute those tests. Tests requiring use of core types – TestSuite, for example – will need to add a reference to the nunit.core.dll assembly.

The NAnt build file now supports building NUnit using version 1.0 or 1.1 of the .NET framework or with version 0.30 of Mono – referred to as Mono-1.0 by convention.
Assert.AreEqual has been extended to allow comparison of two arrays. To compare as equal, the arrays must be of the same or compatible types, contain the same number of elements and each pair of elements must compare as equal.

The core interfaces used to run tests have been changed substantially. These will continue to change to some extent as we attempt to reach a stable set of interfaces for use by third-party clients that run tests through NUnit. In particular, the interfaces now support passing in an array of tests to be run and return an array of test results. Other new features described in this document have required interface changes as well.

There is a new CategoryAttribute which allows test fixtures and methods to be grouped into one or more categories using strings as identifiers. Support is provided for running only those tests in selected categories or all tests except those in selected categories.

Tests may now be run using a filter. Currently, this support is used only by the new Category feature, but it is intended to be of general application for clients and – eventually – users.

NUnit now recognizes when the loaded tests were built using an earlier version of the nunit framework and issues an appropriate message. Earlier versions simply failed to show any tests present in the assembly.

NUnit now captures and issues a message when a worker thread, created during the running of a test, throws an exception. Previously, such exceptions were silently ignored.

The XML output from a test run now shows the number of Asserts executed by each test.

When a test with ExpectedException fails because of an Assert, the message from the assert is now given priority over the message indicating that the wrong type of exception was thrown.

Private SetUp and TearDown methods are now ignored as intended.

SetUp and TearDown are no longer executed for ignored tests.

Forms Interface

The tree of tests now optionally displays checkboxes. These may be used to select multiple tests to be run. Buttons allow clearing all checkboxes and checking only failing tests.

There is now an option to display the name of each test in the standard output.
The thread used to run tests is now created in the test AppDomain. The priority and apartment state for this thread may now be specified in the config file for the test. A separate configuration section is now used for NUnit settings, to avoid name collision with settings required by the application under test.

The GUI interface now runs tests on a separate thread. This allows the tree display to update as execution proceeds. A Stop button now allows canceling a test run. An option to cancel the run is also displayed if the user attempts to exit while a test is running.T
Command-line options are provided to allow the gui to load and begin running a test suite and to load a specific fixture from an assembly.

The properties dialog now shows the number of asserts executed for each test and any description associated with a test.

A cancel button has been added to the project save dialog that appears on shutdown.

Console Interface

The console program has been reorganized to remove differences in how tests are run between the console and gui runners.
The console interface command line parameters now include provision for selecting or excluding tests based on category, for displaying the name of each test in the standard output and for redirecting standard or error output from tests to a file.

A namespace may now be specified after /fixture and all tests in that namespace will be executed.

Mock Objects

This version of NUnit comes with a built-in, lightweight mock object facility. The functions provided include dynamic creation of an implementation of any interface or MBR class, setting of expectations, specification of return values and verification that the expected actions occurred.

This facility is in no way a replacement for full-fledged mock frameworks such as NMock and is not expected to add significant features in upcoming releases. Its primary purpose is to support NUnit’s own tests. We wanted to do that without the need to choose a particular mock framework and without having to deal with versioning issues outside of NUnit itself.

At the same time, we hope that easy availability of a minimal mock object facility will inspire users who are not familiar with mock objects to experiment with them using our built-in facility and to migrate to a more complete framework as your needs call for it.

Limitations

The mono version of this release is still experimental and has not been tested in all environments.
The Explicit property of CategoryAttribute, as described in the Pragmatic Programmers’ book, is not in this version. It will appear in the NUnit 2.2 beta.

